FY-3 Meteorological Satellite Data Transmission

Abstract

This Paper gives an overview of FY-3 meteorological satellite data transmission. F Y-3 meteorological satellite data transmission Includes: real time direct downlink of H RPT(High Resolution Picture Transmission), real time direct downlink of MPT(Moder ate Resolution Picture Transmission), and delay time downlink DPT(Delay Picture Tr ansmission). The paper also gives an introduction of physical layer, data link layer

and application layer about HRPT/MPT/DPT. The physical layer includes: Convoluti onal Encoding, Synchronization, Marker Insertion, Serial to Parallel conversion。 Th e data link layer includes: VCDU primary header, VCDU insert zone, VCDU data unit zone, Reed Solomon check symbol field, Randomization; The application layer inclu des: Application data Source packet structure. The worst link budget in a typical case on specification is also given. And so on.

Aijun Zhu National Satellite Meteorological Center China Meteorological Administration Beijing 100081 China (E-mail: ajzhu@nsmc.cma.gov.cn)

3 .Data link layer

The structure of one CVCDU accord with AOS OF CCSDS. The Reed Solomon Check Symbol Field contains the check symbols which allow error correction. They are generated with interleaving depth of I=4 Coding: RS(255,223)

1.Overview

FY-3 meteorological satellite provides three types of science data return capabilities. When FY-3 satellite passes overhead, the three downlinks transmit synchronously.

The three downlinks Include:

- 1) Real time direct downlink of HRPT;
- 2) Real time direct downlink of MPT;
- 3) Direct playback for delay time data link of DPT

HRPT transmission with L-band

MPT and DPT transmission with X-band

DPT transmits over China area

MPT transmission have translucent mode and encrypt mode.

When MPT transmission in encrypt mode, user ground receiving

should obtain a license from NSMC before receiving MPT.

2 .Application data layer

1) Application data provided with HRPT

The application data provided by the HRPT link are as follows:

VIRR(Visible-And Infrared Radiometer) data

IRAS(Infrared Atmospheric Sounder) data

MWTS (Microwave Temperature Sounder) data

MWHS(Microwave Humidity Sounder) data

SBUS(Solar Backscatter Ultraviolet Sounder) data

TOU(Total Ozone Unit) data

MWRI(Microwave Radiation Imager) data

SIM (Solar Irradiation Monitor) data

ERM(Earth Radiation Measurement) data

SEM(Space Environment Monitor) data

2) Application data provided with MPT

The application data provided by the MPT link include: science instrument data of MERSI (Medium Resolution Spectral Imager)

3) Application data provided with DPT

The application data provided by the DPT link are as follows: MERSI data, VIRR data, IRAS data, MWTS data, MWHS data, SBUS data, TOV data, MWI data, SIM data, ERM data and SEM

4) Source packet structure

	Packet primary header (48bits)							User data	
	Packet identifier 2 octets			Packet sequence control 2octets		Packet length 2octets	header 6octets	varable	
Versi on NO 3 bits "000	type 1 bit "0	Seconda ry header flag 1 bit	API D 11 bits	sequenc e flag 2 bits	Sequ ence count 14 bits	16 bits	time stamp 48 bits	ancilla ry var	Da ta var

5) Application data overview Data rate and VCID and APID

application	Data rate	VCID(BIN)	APID	
MERSI	15.8Mbps	000011 VC1		
VIRR (day)	1.3308 Mbps	000101 VC2		
VIRR (night)	0.39924 Mbps	001001 VC3		
MWRI	30Kbps	001010 VC4		
IRAS	2560bps	001100 VC5	000,0000,0011	
ERM	1024bps	001100 VC5	000,0000,0101	
MWTS	80bps	001100 VC5	000,0000,0111	
TOU	815bps	001100 VC5	000,0000,1001	
SBUS	128bps	001100 VC5	000,0000,1011	
SIM	800bps	001100 VC5	000,0000,1101	
MWHS	6150bps	001100 VC5	000,0001,0000	
SEM	100bps	001100 VC5	000,0000,1111	
Telemetry data	4096bps	001100 VC5		

4 .HRPT downlink

Data rate: 4.2Mbps (after RS coded) Frequency: L-band (1704.5MHZ)

Modulation model: QPSK

Band: 5.6MHz

EIRP: 41dBm (EL=5°) Clock stability: 2×10-5

Data rate: 18.7Mbps (after RS coded) Frequency: X-band (7775MHZ)

5 .MPT downlink

Modulation model: QPSK

Band: 37.4MHz EIRP: 46dBm (EL=5°) Clock stability: 2×10-5

HRPT Satellite to ground station downlink configuration

MPT Satellite to user downlink configuration

6 .Encoding of HRPT downlink and DPT downlink

1) Randomization

 $F(X)=X^8+X^7+X^5+X^3+1$

2) Convolutional encoding

Code rate: CONV (7, 3/4)

Constraint length:7bits

Connection vectors: G1=1111001; G2=1011011 Phase relationship:: G1 is associated with the first symbol

Symbol inversion: NO

7. Encoding of MPT downlink

1) Randomization

 $F(X)=X^8+X^7+X^5+X^3+1$

2) Convolutional encoding

Code rate: CONV (7, 1/2)

Constraint length:7bits

Connection vectors: G1=1111001; G2=1011011

Phase relationship:: G1 is associated with the first symbol

Symbol inversion: NO

The output symbol sequence is: $C_1(1)$, $C_2(1)$, $C_1(2)$, $C_2(2)$